
. '  

t *  

r DIFFUSE REFLECTION AND TRANSMISSION BY CLOUD AND DUST LAYERS 

WILLIAM M. IRVINE 

Harvard College Observatory and Smithsonian Astrophysical Observatory 

Cambridge, Massachusetts 

February 1966 

Cambridge, Massachusetts 021 38 

GPO PRICE $-- 

2 - 6 6 - 5  ff 653 July 65 



DIFFUSE REFLECTION AND TRANSMISSION B Y  CLOUD AND DUST LAYERS 
* J  
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. -  

ABSTRACT 

The problem of radiative t ransfer  in a medium with a strongly aniso- 

tropic phase function i s  considered. 

t ransfer  equation have not proved practicable. Recent calculations using 

the Neumann solution, Romanova's method, and the "doubling method" of 

van de Hulst a r e  described. To facilitate the study of absorption features 

under conditions of multiple scattering, the probability distribution of pho- 

ton optical paths i s  introduced. When appropriately normalized, this d i s t r i -  

bution satisfies a t ransfer  equation. 

Traditional methods of solution of the 

I. INTRODUCTION 

The processes  of diffuse reflection, transmission, and absorption of 

radiation by clouds of aerosol  layers  are of basic importance in both planetary 

and t e r r e s t r i a l  atmospheric physics. Problems that a r e  formally ve ry  s imi la r  

* present  themselves also in studies of multiple scattering of charged particles,  

(1) multiple scattering of light by colloidal solutions, (2)  the diffusion of fas t  

neutrons, ( 3 )  and cer ta in  fields of astrophysics, such as the investigation of 

the reflection nebulae and the diffuse light in the galaxy.(4) 

In all  these instances, the basic problem involves solving the equation of 

t ransfer  i n  a turbid medium. 

the scattering diagram of the individual particles of the medium (or  m o r e  

rigorously, the scattering diagram of a unit volume in the case of a polydis- 

perse  medium) is  strongly asymmetric.  

ing of radiation, for  example, when the scattering centers have dimensions 

comparable with o r  l a rge r  than the wavelength of the radiation. 

sca t te r  an incident plane wave predominantly in the forward dirkction. (5) 

A scattering medium may be called turbid when 

This will be the case for the sca t te r -  

Such particles 
1 
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II. THE PHASE FUNCTION 

Using the nomenclature of Chandrasekhar, (6) we shall  describe the 

angular scat ter ing pattern of the individual scattering ac t  by a phase function 

@(a), where @(a)/4~ i s  the probability that a scat tered photon will be deviated 

by an angle a. 

tion effects. 

We shall  consider @ to be a sca le r ,  and thus ignore polariza- 

Since the difficulty of the multiple-scattering problem increases  markedly 

with growing complexity of the phase function, mos t  of the l i t e ra ture  of 

radiative t ransfer  theory has been concerned with ve ry  simple phase functions, 

e i ther  isotropic scattering, Rayleigh scattering, o r  scattering with a phase 

function = a t b cos a. Rayleigh scattering i s ,  of course,  appropriate for  

particles with dimensions much smal le r  than the wavelength of the radiation, 

while isotropic scattering happens to apply to a s te l la r  atmosphere in  local 

thermodynamic equilibrium in the gray case. 

tioned, @ = a t b cos a, has  been used as a t e s t  case  for asymmetr ic  s ca t t e r -  

The third phase function men- 

ing. (7, 8, 9, 10) 

The striking departures f rom the simple phase functions mentioned above, 

which regularly a r i s e  in the optics of planetary atmospheres,  a r e  i l lustrated 

in figure 1 .  

even under conditions of very large horizontal visibility, a r e  apparent. 

presence of cloud droplets increases  the forward elongation of the phase func- 

tion by an additional order  of magnitude o r  m o r e  (f ig .  2 ) .  

The significant departures f rom Rayleigh scattering, which occur 

The 

The present  paper i s  thus concerned with the solution of the equation of 

radiative t ransfer  when the phase function i s  strongly elongated, e i ther  in the 

forward o r  the backward direction. We shall confine the discussion to methods 

that give, in  principle, rigorous solutions to the equation and shal l  not discuss 

approximate methods based on s impler  physical models (for example, Edding- 

ton 's  approximation o r  the two-stream method, (9) diffusion-type methods, ( 1  3 )  

o r  the method utilized fo r  extensive computations by Feigel'son e t  al. (14) 

-, 

* 
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111. TRADITIONAL METHODS 

6 -  

The problem posed here  may, in principle, be solved with the aid of 

methods that a r e  now familiar.  

homogeneous layer ,  the equation of transfer i s  an integro-differential equa- 

F o r  example, in the case of a plane-parallel 

tion in three variables (two angular variables plus a coordinate specifying 

depth in the layer).  

by expanding the phase function and the intensity (which is the unknown 

quantity) in Legendre polynominals. 

polar angle may be replaced by a sum using, for example, a gaussian quad- 

ra ture  formula. There resul ts  a system of l inear  f i r s t -order  ordinary dif-  

ferential  equations. (6) 
the expansion of an elongated phase function in Legendre polynominals r e -  

quires a large number of t e r m s  N (for example, scattering by a spherical  

water  droplet  with a circumference-to-wavelength ratio of 20  requires  

approximately 45 te rms) .  (1 5) 

of simultaneous equations to be solved be chosen such that 2n - 1 L 2N. 

In consequence, numerical  problems attending the solution become very  

severe  (e. g . ,  the character is t ic  equation that mus t  be solved i s  an algebraic 

equation of o rde r  n /  2). 

The dependence on azimuthal angle may be removed 

The remaining integration over the 

Difficulty ar ises  in  practice with this method because 

Consistency than requires  that the number n 

Similar  practical  difficulties a r i se  in the application of the coupled non- 

l inear  integral  equations which a r i s e  in the alternate formulation of the t rans-  

f e r  problem first given by Ambartsumyan (16) and Chandrasekhar (6) on 

the basis  of principles of invariance (but which may also be derived directly 

f r o m  the equation of t ransfer) .  

equations of this method gives r i s e  to  problems in the numerical  calculations 

and interpretation of resul ts .  Thus, Mullikin has  shown that the solutions to 

cer ta in  of the equations obtained f r o m  the principles of invariance a r e  not 

in general  unique unless additional constraints a r e  specified, (19) in the 

absence of which an instability in the numerical  calculations can resul t  for  

optical depths grea te r  than about 1. 5. That s imi la r  problems Yccur in the 

formulation of this approach called by Bellman "invariant imbedding'' (20) 

has  a l so  been shown by Mullikin. (21) 4 

(17,18) Moreover, the nonlinearity of the 

- 

i 

L 



- 4- 
Mullikin's method, (22)  which utilizes l inear  singular integral  equations, 

would also s e e m  to be impracticable when applied to  very elongated phase 

functions. 

IV. RECENT DEVELOPMENTS 

Le t  us, for  concreteness,  consider the following problem. A homogeneous 
JI 

plane-parallel  l ayer  of total optical thickness T-' is illuminated by monochro- 

mat ic  radiation. The sources  of radiation may be either internal o r  external 

to  the layer .  The single scattering albedo is a .  We designate the optical 

depth measured  vertically f rom the top of the layer  by T , the angle between 

a given direction and the direction of increasing T by 8 , and the azimuthal 

angle by +. 
intensity I(T, Q )  of radiation in the layer.  

problem is then 

We fur ther  se t  Q = ( e ,  +) and p = cos 8 .  We seek the specific 

The equation of t ransfer  fo r  this 

Most frequently we shall be interested in the case  when the source of 

radiation is external and at  a la rge  distance f rom the layer.  We may then 

consider the top of the layer  to be illuminated uniformly by paral le l  radia- 

tion incident at  an angle Q = (e 
as  the diffuse radiation only (that i s ,  radiation that has been scat tered at  

l ea s t  once). The inhomogeneous t e r m  in  equation (1) then takes the form 

+ = 0). It is then convenient to define I 0' 



, and the boundary conditions a r e  

- .  

I(0, n) = 0 P ' O  

A. Small  -Angle App r o xima t i on 

Because the difficulties in the numerical solution of equation (1) a r e  

associated with the forward peak in @ and I , it is  natural  to t r y  to separate  

off that portion of I that i s  strongly elongated in the forward direction. 

Romanova (23)  has  proposed a method for  achieving this based on the small- 

angle approximation familiar f rom the theory of scattering of fas t  par t ic les .  

The small-angle approximationT i s  the solution of the equation 

I) 

where S(T, a)  is given by equations ( l b )  and ( Z ) ,  and the boundary conditions 

a r e  

- 
I ( 0 ,  n) = 0 ( - 1 5 p  5 1 )  ; (4b) 

the variable p in equation (1) has been replaced by the constant p. 

boundary conditions assume that there  is no reflection f rom the layer .  

solution to this approximate problem is known. 

and the 0' 
The 

If we now se t  

r = r t Y  (5) 
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N 

we easily find that I satisfies 

a t ransfer  equation of the same form as our original problem. 

the angular dependence of 7 i s  much less pronounced than that of I. 

Hopefully, 

The new equation (6)  may of course be solved by any of the traditional 

methods. 

interpolation formula with unknown coefficients, accurate  (-J 5 percent) 

values fo r  the intensity may  be found by use of as  few as five angular points 

i n  the interval 0 5 8 5 7 ~ / 2  (the azimuthal components of I separate in the 

usual way). 

cation) for  a layer  of optical thickness T" = 2 .  5 a r e  compared with the 

solution obtained f rom the Neumann ser ies  ( see  below). The results agree 

quite well except f o r  the directly backscattered radiation where the small-  

angle method does not predict  the backscattered peak. (Since the Neumann 

s e r i e s  computation did not use enough angular points to  completely define 

the amplitude of the maxima and minima in the reflected light, Romanova's 

calculations may be slightly more  accurate than would appear f r o m  the 

figure. ) 

a number of intuitive expectations: 

Romanova (24) has found that by expressing through a Lagrangian 

N 

In figure 3,  Romanova's calculations ((25) and private communi- 

Romanova's calculations for  thicker layers  (T *  = 12, CO) confirm 

1. I(p) becomes more  and more  isotropic as  we go to  greater  depths. 

2 .  In the deep regime (angular dependence of I independent of depth, 

I independent of azimuth) I is  more  anisotropic a s  the absorption 

increases .  

T O  (the optical depth at which the deep regime se ts  in) is greater,  

the grea te r  the asymmetry of 9 

3 .  

and the l a r g e r  the absorption. 
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B. Neumann Solution 

_ -  
It is well known that equation (1 )  may be rewrit ten a s  an integral  equation 

fo r  the source  function S: 

S(T, 5 2 )  = a A ( S }  t S1 , 

where 

F o r m a l  manipulation of equation (7)  then gives the solution 

n= 0 

where (1 a A ) - l  is the inverse of the operator (1 - A ) .  It may be shown that 

the sum in  equation ( 9 ) ,  known as the Neumann se r i e s ,  is  rigorously the 

unique solution to the problem. ( 1  7) 
represents  nothing more  than the sum of successive orders  of scattering. 

This solution has  been known for some time, but has  generally been regarded 

as being too slowly convergent for  pract ical  use.  

modern computing machines this is not a ser ious problem for  moderate optical 

depths and the method has a number of advantages (27): 

Physically, the Neumann s e r i e s  

However, with the use of 

1. All operations a r e  l inear  and the resul t  at each stage has a direct  

physic a1 inte r p r  etation. 

There  is no problem f o r  transmission at an angle equal to  the angle 

of incidence, where Chandrasekhar 's  X and Y equations have a 

s ingul a r ity . 

2.  
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3. The cfiect of changing the absorption in the layer  ( i f  the total optical 

thickness T'" remains the same) is accounted for very simply through 

the factor a 

There a r e  no special  problems in the conservative case  (a = 1) .  

n .  in the nth-order scattering. 

4. . -  

Finally, there  i s  a point that seems not to  have been emphasized until 

ra ther  recently. Examination of the eigenvalue equation 

shows that there  i s  a maximum eigenvalue ( A  

and that dominates the modulus of the other eigenvalues. (27,28) 

means that af ter  a finite number of te rms  n 

have been computed, the s e r i e s  may be truncated and the remainder replaced 

by a geometric s e r i e s  with ratio ( a q ) .  

fo r  asymmetr ic  scattering, when the 

numerical  integration, s o  that successive i terations can become time consuming. 

- q )  that i s  nondegenerate 1 -  

of the s e r i e s  in equation (9)  
This 

0 

Such truncation is par t icular ly  important 

A operator  involves a double o r  t r iple  

An example of the approach to  the eigenfunction condition is shown in 

figure 4 for  the phase function used in (29): 

whe r e  
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Computations of diffuse reflection and t ransmission by thin layers  for  

phase functions character is t ic  of te r res t r ia l  hazes and fogs have been made 

by Irvine.  ( 2 9 )  

phase functions and also f o r  isotropic scattering a r e  shown in figure 5. 

figures 6a  and b a r e  shown examples of the diffuse reflection and t rans-  

mission for such phase functions. 

Values of rl a s  a function of optical depth for two of these 

In 

C .  Doubling Method 

The disadvantage of the Neumann solution described in the previous 

section i s  i ts  slow convergence for 

pointed out, however, we can improve this convergence by using the 

following approach: 

thicker layers .  As van de Hulst has  

If we know the reflection R(52, 52 ) = I(0, 52)  and the t ransmission 0 
rl. 

T ( a ,  !do) = I(T-'., a) for  a layer  of optical thickness T*, then we know 

implicitly the reflection and transmission by a layer  of optical thickness 

2 ~ " * .  The la t te r  quantities, as  may be seen f rom figure 7, will each be given 

by an infinite s e r i e s ,  but these se r i e s  wi l l  converge much m o r e  rapidly than 

the corresponding Neurnann se r i e s .  

method has  been described by van de Hulst .  (27)  

.I, 

The mathematical  formulation of this 

R n +  l 'Rn or  Just  a s  with the Neumann se r i e s ,  the ratio of successive t e rms ,  

/ T  approaches l imit ,  s ay  a ,  s o  that the se r i e s  may be truncated and T n t l  n '  
the remainder  replaced by a geometric s e r i e s .  

Some computations of diffuse reflection and t ransmission by this method 

for  an elongated phase function a r e  shown in figures 8a and b. (30)  
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V. ABSORPTION BANDS 

The ent i re  discussion thus fa r  has  been implicitly confined to the case 

of radiation within a wavelength interval (or ,  in the case of neutron sca t te r -  

ing, of par t ic les  within an energy interval) such that the scattering charac-  

te r i s t ics  of the atmosphere (a, a,  7 ‘ ” )  are  essentially constant. 

the study of absorption lines o r  bands, across  which the absorption coeffi- 

cient of the atmosphere w i l l  be a rapidly changing function of frequency, is 

of g rea t  importance to atmospheric and planetary physics. 

intensity and width of such absorption features one may hope to deduce the 

thermodynamic character is t ics  of the layer in which they were produced, a s  

well as an est imate  of the amount of absorbing constituent present .  

J, 

However, 

F r o m  the relative 

There a r e  a number of difficult problems associated with the interpreta-  

tion of such absorption features:  

1. 

the absorption coefficient of the atmosphere changes appreciably across  A V  , 
then one will observe an appropriately weighted average of the monochromatic 

solutions Iv to the equation of transfer.  

to construct such an average in a simple manner, since the frequency 

en te r s  I not only through the albedo a, but a lso through the optical depth 

T and total optical thickness T . 

If the band width A V  of the detector being employed is such that 

It i s  not immediately obvious how 

-1- -a- V 

2. In studying the shape of an absorption feature it would be convenient 

if, instead of computing independent solutions to the equation of t ransfer  

I at a sufficient number of points to define the line shape, one could 

solve the equation of t ransfer  once a t  a frequency outside of the absorption 

feature ,  and then apply a suitable correction to obtain the intensity for  any 

a rb i t r a ry  ab s orption. 

V 
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ce of any absorbing constituent above 

some given level in an atmosphere,  it is  necessary to know the mean 

path traveled by photons in that par t  of the atmosphere above such a 

height. 

interest ,  the calculation of this path length i s  not a simple matter.  
- _  Because of the occurrence of multiple scattering in problems of 

These problems a r e ,  in fact ,  closely related.  Let us  assume (as  is f r e -  

quently the case )  that the scattering character is t ics  of the atmosphere a r e  

independent of frequency within the wavelength interval of the absorption 

feature .  It i s  then natural  to introduce the probability p(X; T, R ) dX that 

a photon contributing to I ( T ,  R ) has  traveled an optical path for  scattering 

between A and X t dX. (31) 

observed within the interval At' if the absorption band were absent. 

absorption coefficient of the atmosphere is  changing rapidly ac ross  Av , 

the t ransmission function for  the feature of width AV will no longer be 

exponential, but may have a more general f o r m  $av ( a ) ,  where 1 is geometr ic  

path length (for example, $ might be the t ransmission on the E l sas se r  model 

or the Goody model, which a r e  appropriate for  the absorption bands of CO 

and H 0 respectively).  (32) 

be observed is  then clear ly  

Here I = I,, Av i s  the intensity that would be 

If the 

2 
The intensity integrated across  AV that will 

2 

where F is the scattering coefficient of the layer  (in units of inverse length). 

We have thus separated the radiative-transfer aspects  of the problem (which 

involve finding I and p)  f rom the complications due to the introduction of 

absorption, which a r e  accounted for by the simple quadrature. (1 1 ) 
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The f i r s t  moment of p(A) 

is the mean optical path traveled by radiation in the layer  in the absence 

of absorption. 

A .  Mean Path Lengths 

We may investigate ( A )  without explicit knowledge of the f o r m  of p(A). 

Consider the f o r m  of equation (1 1 ) for  monochromatic radiation s o  that 

$ = e-", where p = F / K  and K is the coefficient of t rue absorption. 

entiating both s ides  with respect  to p , we find that 

Differ- 

o r  i f  we write I with i ts  arguments in the f o r m  usual in astrophysics 

Let us denote the integral  t e r m  on the right-hand side of equation (1 1 ) 

by (4 ) . 
ing cases .  0 
the radiation w i l l  come f r o m  path lengths for  which A << 1. 

$ to  f irst  order  in A, we find that 

We may approximate this term through use of (1) in cer ta in  limit- 
J, 

F o r  example, when the layer i s  thin ( ~ ' " ( s  t s ) << l ) ,  most of 

If we then expand 
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' If the strength of the absorption en ters  $ through a parameter  b such that 

4 = $(bA) (for  example, in the strong-line l imit  the E l s s s s e r  function is  

\c1 = e r fc  G A  ) equation (1 5 )  w i l l  hold provided that bA << 1 .  

. .  
In order  to es t imate  the abundance of an absorbing constituent above a 

a s  a function of cer ta in  level in the atmosphere,  one may wish to know A 

the depth of the level, where A is defined by \c1 ( A e f f )  = ( $> (that i s ,  heff  

i s  the laboratory path length that would give the same absorption observed 

in the multiple-scattering case) .  W e  shall have A = ( A >  under the same 

conditions for which equation (1 5 )  holds (that i s ,  A << 1 ,  o r  bA << 1 ). When 

these conditions do not hold, A w i l l  be different for different frequencies 

within an  absorbtionfeature,  so  that the profile of a given line or  band w i l l  

be different in the laboratory f r o m  that observed af ter  multiple scattering 

under identical thermodynamic conditions. 

eff 

eff 

eff  

eff 

B. Probability Distribution ( 3 3 )  

F r o m  the f o r m  of equation (1 1 )  we see  that it may be useful to renor-  

malize p and define the new quantity 

The quantity& satisfies an equation of t ransfer  which, in the case of a 

plane-parallel  layer,  takes the f o r m  

J ( h  = co) = %!(A = 0 )  = 0 , 
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w h e r e f i s  the relevant source function; the boundary conditions with respect  

to T a r e  given by equation ( 3 ) .  

a conservative layer ,  the albedo a does not enter equation (17).  

r Note that since d i s  defined with respect  to 

. .  
One may also formulate principles of invariance satisfied by 

obtain corresponding nonlinear integral equations fo r  the reflectivity 

and t ransmissivi ty  y(X), f r o m  which it may be seen that 

arid 

( A )  

which is a principle of reciprocity.  

In analogy to equation (9), the Neumann solution for  8 takes the f o r m  

n= 1 

4.rr 0 

where k is given by equation (8b) and we have introduced the shift operator 

F o r  thicker layers ,  use of equation (19)  is not so convenient a s  noting 

that equation (17 )  is identical to the equation of t ransfer  f o r  a time-dependent 

radiation field. The la t ter  problem i s  amenable to Laplace t r ans fe r  

techniques, (34) and it is easy  to  show that 
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-1 . where L 
AP 

I@; i2, T )  means that the ent i re  effect  of t rue absorption on the intensity is 

expressed through the argument p(i. e . ,  T is the optical depth due to scattering 

only). 
r 

layer ,  -1 ( T  = 0 )  = L may be obtained analytically in the limits of large and 

smal l  absorption. By inverting cer ta in  expressions due to Rozenberg that 

a r e  valid in the limiting case p << 1 ,  using the Neumann solution when 

p << 1, and interpolating with the aid of the requirement of conservation of 

flux, Romanova (35) was able to obtain the results shown in figure 9 for 

is the inverse Laplace t ransform operator,  and the notation 

In the case of reflection f r o m  a semi-infinite o r  f r o m  a very  thick 

A ( X )  = 1 dn'p'/i. ( A ;  no) . 

Note that, a s  is  intuitively obvious, the distribution of path lengths is much 

more concentrated toward small A fo r  isotropic scattering than for  forward- 

directed s catte ring. 
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Figure  1.  Phase functions (not normalized) fo r  the lower t e r r e s t r i a l  atmos- 

phere under various conditions of horizontal visibility S = 3. 91 / z  
( z  = volume extinction coefficient). (1 1) 
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Figure  2 .  Phase functions for cloud and haze layers  at X = 0.45 p. (12) 
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plane-parallel l ayer  of optical thickness T* = 2. 5 for  normal  
incidence and Mie scattering (m = 1 .  33 ,  2.rrr/X = 20).  
measured f rom outward normal. ( 2 5 , 2 6 )  
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Figure  4. Diffuse reflection and t ransmission in  successive orders  of scat-  
ter ing n f rom a plane-parallel atmosphere of unit optical thickness 
fo r  normal  incidence and the phase function equation (10) with 
g1 = 0. 75 and b = 1. Angle 0 measured f r o m  outward normal. (26) 
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Figure 5. The eigenvalue versus  optical thickness for  three phase functions 
of the form of equation (10) (26): 

A -  g1 = g2 = 0 (isotropic scattering), 
B - 81 = 0. 75, b = 1 
C - g l  = 0.824,  82 = -0. 55, b 0.9724. 
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Figure 6. Diffuse t ransmission and reflection f rom a plane-parallel layer  of 
optical-thickness unity for  normal incidence and phase functions of 
the type equation (1 0) (26,29):  

C - g1 = 0.824, 

E - gl = 0 .90 ,  82 = -0 .75 ,  b = 0.  95. 

82 = -0. 55, b = 0. 9724, 
D - gl = 0. 7861, b = 1 (same first moment a s  C), 
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Figure  7. Geometry of the doubling method (after (27)).  
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Diffuse t ransmission and reflection by a plane-parallel  layer  of 
optical thickness T*  f o r  normal incidence and phase function C 
(see f ig .  6a). (30)  



”$ 

’ e  0. I 6 

0. I 2 

A 

0.0 8 

0.04 

I 
A 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
1 

I 

- 

1 

0-\ 
\ c \ 

I I I 

0 4 8 12 16 20 24 
0 

x 

Figure  9. Probability distribution of photon optical paths in total flux reflected 
f rom a semi-infinite, conservative layer  for  normal  incidence: ,. (1) Mie scattering (m = 1 .  3 3 ,  2 m / X  = 20), (2) isotropic scattering. 
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